Development of a ‘Practical Sourcebook on Mercury Storage and Disposal’

Desiree M. Narvaez
Programme Officer, UNEP Chemicals Branch, DTIE

Global Mercury Partnership
3rd Waste Management Partnership Area Meeting
Manila, Philippines
10-11 December 2013
Background

- Unsound management of mercury and mercury waste is an important source of mercury releases
- Future excess supply will increase the need for ESM significantly
- Work of the Partnership areas on supply and storage, waste management and products

GC Decision 25/5:
Requested UNEP to enhance capacity for mercury storage and provide information on the sound management of mercury and mercury wastes.

Relevant provisions of the Minamata Convention:

- **Art. 10:** Environmentally sound interim storage of mercury, other than waste mercury
- **Art. 11:** Mercury wastes
What is the Sourcebook?

| Objective: |
| to enhance the capacity of governments to develop environmentally sound strategies for the interim storage of mercury other than waste mercury and the management of mercury wastes |

| Practical, informational document; short, graphical and illustrative; clearly written | Operationalizes the Basel Technical Guidelines and complements the Good Practices document | Will be compiled by International Solid Waste Association (ISWA) |

- Timeframe: November 2013 - June 2014
Sources

The Sourcebook will draw on:

- **Existing work within the Partnership areas**
- **Relevant reports and publications**
- **Input from an Expert Group**

The Expert Group will be comprised of independent experts in the field of storage and waste management, representatives from various governments, IOs, industry, academia, as well as other relevant stakeholders.
Mercury Storage and Disposal Projects in Latin America

The projects were implemented in Argentina and Uruguay (2011-2012) as well as Mexico and Panama (2012-2013).

- Inventories were conducted, relevant regulatory frameworks reviewed and existing hazardous waste treatment facilities surveyed

- A decision-making process was initiated and National Action Plans (NAPs) developed

- Basic management options and potential sites for interim storage were identified

Source: INTI, Proyecto “Almacenamiento y disposición ambientalmente adecuados de mercurio elemental y sus residuos en la República Argentina”

Source: Project for storage and disposal of mercury in Panama, final report, 08.2013
Findings and Recommendations

Uruguay
- Main sources: chlor-alkali, dental amalgam, electrical switches
- Chlor-alkali plant + industrial waste landfill best suited for interim storage
 - Revise the relevant regulatory framework
 - Invest in infrastructure for treatment of mercury-containing waste

Argentina
- Main sources: health sector, chlor-alkali, light bulbs
- 4 hazardous waste security landfills suited for interim storage
 - Enhance analysis of potential interim storage facilities
 - Make a more detailed inventory
 - Advance regulations enabling transfer of wastes to domestic facilities and draft specific instruments for mercury wastes
Findings and Recommendations

Mexico
- Main sources: gold extraction and processing, batteries, landfills
- 2 security landfills best suited for interim storage
- Update the inventory and proceed with development of the NAP
- Develop specific instruments for mercury waste management
- Continue assessment of geologic formations for disposal

Panama
- Main sources: batteries, informal waste dumping, cement production
- One option each identified for interim storage of elemental mercury (bunkers) and mercury-containing waste (landfills)
- Foster institutional coordination and improve regulatory framework
- Conduct periodic updates of the inventory and validate results
- Adapt bunkers for interim storage and incorporate retorting technology
Expected Outcomes

Increased capacity of relevant national and/or regional decision-makers, especially in developing countries and countries with economies in transition, to:

...assess the national situation in terms of sources and volumes of mercury and mercury wastes, relevant regulatory frameworks and existing hazardous waste treatment facilities

...choose from the technological options available for interim storage, treatment and disposal given a specific set of national circumstances

...develop and implement environmentally sound strategies for the interim storage of mercury and the management of mercury wastes
Components

Practical Sourcebook on Mercury Storage and Disposal

Description of Situation and Specific Storage/Disposal Options
- Sources, types, volumes of mercury wastes
- Survey of regulatory frameworks, facilities etc.
- Storage and disposal options
- Treatment technologies

Development of a Storage/Disposal Strategy
- Parameters for selecting an option
- Features and typical requirements of an option
- Requirements for transboundary movement of waste
- Financial and legal implications

Examples of Good Practices/Case Studies
- Description of situation
- Options considered and selected
- Description of implemented strategy and selected facility
- Regulatory framework
- Costs
- Lessons learnt

Decision Trees
Sample Decision Tree: Environmentally Sound Management of Mercury-Added Products

1. Make an inventory, then...
 - No

2. Establish schemes and the necessary regulatory framework, then...
 - No

3. Ensure proper packaging and labelling and establish the necessary regulatory framework, then...
 - No

4. Build sufficient capacity for interim storage, then...
 - No

5. Inventory specifying quantities and sources of end-of-life mercury-added products in place?
 - Yes
 - On inventories see BTG p. 19–20, para. 61-67 and p. 13, para. 35-36, UNFP Toolkit for Identification and Quantification of Mercury Releases
 - No

6. Schemes for the separation of mercury-added products from other wastes as well as for the collection of such waste in place?
 - Yes
 - Use information gained via inventory for establishment of appropriate collection schemes
 - No

7. Proper packaging and labelling ensured?
 - Yes
 - See BTG p. 20-30, para. 125-121 (on separation) and p. 30-31, para. 123-130: Good Practices p. 31-66, para. 43-50 (on collection)
 - No

8. Hazardous waste treatment facility with sufficient capacity for environmentally sound interim storage of mercury-added products in place?
 - Yes
 - On packaging and labelling see BTG p. 32, para. 132
 - No

9. Environmentally sound transport from generators premises and/or collection points to hazardous waste treatment facility for interim storage
Environmentally sound transport from generators premises and/or collection points to hazardous waste treatment facility for interim storage

Do you want to recover the elemental mercury?

Yes

Do you have the necessary capacity for recovery?

Yes

Recover elemental mercury

On recovery see BTG p. 35-40, para. 151-171

No

Re-Use

Is the elemental mercury designated for re-use or disposal?

Waste

No

Store mercury-added products in suitable hazardous waste treatment facility

Build technological capacity; interim storage in hazardous waste treatment facility until capacity available, then...
Examples of Good Practice / Case Studies

- US: 4,436 mt of mercury stockpiles were collected and stored in Nevada in aboveground warehouses
- Stringent safety criteria (e.g. flooring, collection slump, fire protection, frequent inspection)
- Costs: e.g. $3,875,000 for warehouse improvements

Examples of Good Practice / Case Studies

- Peru recovered by-product mercury from open-pit large-scale gold mines
- Recovered mercury was exported for processing
- Cost of export: < $1,00/kg

Remaining challenge: Peru does not have facilities for permanent storage

Source: Mercury: Important By-Product From Peru’s Large-Scale Gold Mines, Ministerio de Salud, Dirección General de Salud Ambiental, Peru, presentation held during the consultation meeting on waste and storage, Geneva, September 23, 2010
Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a) Administrative and logistical preparation</td>
<td>1</td>
</tr>
<tr>
<td>1b) Establishment of the EG</td>
<td>2, 3</td>
</tr>
<tr>
<td>2a) Collection of relevant materials and documents, preparation of a brief guideline on how to document Good Practices</td>
<td>4</td>
</tr>
<tr>
<td>2b) Request for information from the expert group and other relevant stakeholders</td>
<td>5</td>
</tr>
<tr>
<td>3) Drafting of a working document</td>
<td>6</td>
</tr>
<tr>
<td>4) Feedback by the EG members on the working document</td>
<td>1, 2</td>
</tr>
<tr>
<td>5a) Drafting of a consolidated version of the working document</td>
<td>3</td>
</tr>
<tr>
<td>5b) Distribution of the draft sourcebook and request for feedback from the EG</td>
<td>4, 5</td>
</tr>
<tr>
<td>6) Electronic consultative process with the EG</td>
<td>1, 2</td>
</tr>
<tr>
<td>7) Finalization of the sourcebook</td>
<td>3</td>
</tr>
<tr>
<td>8) Layout and graphic design</td>
<td>4</td>
</tr>
<tr>
<td>9a) Creation of a dedicated webpage and interactive tools</td>
<td>5</td>
</tr>
<tr>
<td>9b) Printing, launch and dissemination</td>
<td>6</td>
</tr>
</tbody>
</table>
Thank you for your attention

Division of Technology, Industry and Economics
Chemicals Branch
International Environment House 1
11-13 Chemin des Anémones
CH 1219 Châtelaine
Geneva, Switzerland

For more information contact:
Desirée Montecillo Narvaez
Tel : +41 22 917 8865
Fax : +41 22 797 3460
E-mail: Desiree.Narvaez@unep.org

Or visit: